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Appendix S2: The three models used to generate the test data
sets

The three models we consider as same as in Dakos et al. 2011 [1]. We reproduce the equations and the

table containing parameters, their description and values here.



Local positive feedback model with no patchy pattern

The first data set is based on a coupled vegetation-water dynamical model by Shnerb et al. (2003) and
Guttal and Jayaprakash (2007) [2,3]. We denote the water and biomass density at location (4,7) in a

discretized two dimensional space by w; ; and B; ;, respectively. Their coupled dynamics is given by
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Mathematically, this model is equivalent to a discretized version of coupled stochastic reaction diffusion
equations. Local dynamics (also referred to as mean-field model) are based a coupled vegetation-water

dynamical model [2,3] and shows a saddle-node bifurcation as the aridity increases.

Local facilitation model, yielding scale-free patchy vegetation

The second data set was derived from a stochastic cellular automaton model with discrete spatial and
time steps [4]. In this model, an ecosystem is represented by a grid of cells, each of which can be in
one of three possible states: vegetated (+), empty (o) or degraded (-). Empty cells represent fertile soil
whereas degraded cells represented eroded soil patches unsuitable for recolonization by vegetation. The

probability of transiting from one state to the other are given by:

wo4] = [6p+ + (1 —delta)q](b—cpy) (3)
wi_g = T+ fqy- (4)
W0 = ™ (5)
wo = d (6)

A mean-field approximation of this model also exhibits a saddle node bifurcation as a function of



aridity [4].

Scale-dependent feedback model, yielding periodic patterns

Here, we employed a stochastic version of a three partial differential equations model describing the

dynamics of vegetation biomass, soil water and surface water [5]. The equations are given by:
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Figure S1. Generic leading indicators in the three data sets plotted as a function of the value
of the driver (aridity increases from left to right along the z-axis). The black dots correspond to the
ten snaphots mentioned at the end of page 13, first paragraph, as those selected. Left: local positive feedback
model. Middle: local facilitation model (data transformed into quantitative data using 5x5 submatrices). Right:
scale-dependent feedbcak model. First row: Biomass. Red dots along the z-axis indicate the location of the
snapshots chosen for Fig. 1,3,5-7 of the main text. Second row: spatial variance. Third row: spatial skewness.
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Fourth row: spatial correlation between near neighbors.



Table S1. Model parameters and their values

Model Definition Value and unit
parame-
ter
Local positive feedback model
w5 Water moisture level in each grid cell (i, 5) mm
B, Vegetation biomass in each grid cell (i, ) g
D Exchange (diffusion) rate 0.05 day !
A Water consumption rate by vegetation 0.12 g~ 'day*
p Maximum vegetation growth rate day =1
B. Vegetation carrying capacity lg
o Maximum grazing rate 2 day~*
By Half-saturation constant of vegetation consumption lg
R Mean annual rainfall .8-2mm day~*
Ow Standard deviation of white noise on water moisture 0.1
oB Standard deviation of white noise on vegetation biomass 0.25
aw; ; White noise; uncorrelated in each grid cell 0.25
Local facilitation model
W0, 4] Colonization probability of an unoccupied site
w— o] Regeneration probability of a degraded site
wi o] Mortality probability of an occupied site
wio,— Degradation probability of an unoccupied site
o Density of vegetated sites
il Clustering vegetation intensity probability of finding a site j in state i (4,0, —)
m Mortality probability of a vegetated site 0.1
f Local facilitation strength; maximum effect of a neighboring vegetation site on | 0.9
the regeneration of a degraded site
I} Intrinsic seed production rate per vegetated site; “survival probability”, “ger-
mination probability”
€ Establishment probability of seeds on 0 site in a system without competition
b Measures the severity of the environmental conditions (= f¢); a lower b value | 0.3-1
reflect a higher aridity level
1) Fraction of seeds globally dispersed 0.1
g Competitive effect of the global density of + sites on the establishment of new | 031
individuals
c Bg 0.3
r Regeneration probability of a — site without vegetated sites in its neighborhood | 0.0001
d Degradation probability of 0 sites 0.2
Scale-dependent feedback model
P Plant density gm™2
W Soil water mm —
0] Surface water mm —
c Conversion factor for water uptake to plant biomass 5gm 2mm~!
Imaz Maximum specific water uptake 0.1
mm g~ m?day !
k1 Half saturation constant of water uptake by plants 5 mm
d Specific rate of plant density loss due to mortality 0.25 day~*
@ Rate of surface water infiltration 0.4 day!
ko Plant density scale determining how surface water infiltration increases with P | 5 gm ™2
Wo Minimum surface water infiltration coefficient in the absence of plants 0.2
Tw Soil water loss rate due to evaporation and drainage 0.4 day—!
R Rainfall 0.05-2 mm day~*
D, Plant dispersal diffusion constant 0.01 m?day—!
D, Soil water diffusion constant 0.1 m?day="
D Surface water diffusion constant 100 m? day—!
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